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ABSTRACT 

A variety of nanoparticles have been generated and 

analysed over the last few decades, and there has 

been a lot of buzz about their potential as 

diagnostic and therapeutic agents. Despite their 

potential as diagnostic agents, only one diagnostic 

nanoparticle formulation, iron oxide nanoparticles, 

has made it into clinical practise thus far. This is 

due to the challenges of attaining acceptable 

pharmacokinetic characteristics and reliable 

monodispersed nanoparticle manufacturing. 

Furthermore, biodegradation, elimination, and 

toxicity are also concerns. The vast majority of 

nanoparticle formulations now in use in clinics are 

utilised for medicinal purposes. These therapeutic 

nanoparticles are primarily based on the "enhanced 

permeability and retention" (EPR) effect, which 

aims to more efficiently transfer a (chemo-

)therapeutic medication to the diseased site while 

avoiding buildup in healthy organs and tissues. 

Nanoparticles also offer tremendous potential for 

theranostic applications, as they can combine 

diagnostic and therapeutic elements in a single 

nanoparticle formulation, and are thought to be 

extremely effective for personalising 

nanomedicine-based treatments. 

 

I. INTRODUCTION 
The prefix 'nano' refers to a Greek prefix 

that means 'dwarf' or'very little,' and represents a 

thousand millionth of a metre (10.9). There is a 

difference between nanoscience and 

nanotechnology. Nanoscience is the study of 

structures and chemicals on nanometer scales 

ranging from 1 to 100 nm, and nanotechnology is 

the technology that uses it in practical applications 

such as electronics [1].  Various nanoparticle 

formulations for diagnostic and therapeutic 

purposes have been developed as a result of recent 

breakthroughs in nanotechnology. Diagnostic 

nanoparticles are designed to aid in the 

visualisation of pathologies and the better 

understanding of important (patho-) physiological 

principles underlying a variety of diseases and 

treatments. However, due to the complicated 

demands on their pharmacokinetic characteristics 

and elimination, nanodiagnostics are only helpful 

in a restricted number of clinical settings. As a 

result, the vast majority of nanoparticle 

formulations employed in clinics today are for 

therapeutic purposes. By lowering their location in 

healthy tissues, therapeutic nanoparticles aim to 

improve the accumulation and release of 

pharmacologically active substances at the diseased 

site, increase therapeutic efficacy, and reduce the 

occurrence and degree of side effects. [2-5] 

Nanoparticles' intrinsic properties hold great 

promise for combining diagnostic and therapeutic 

agents in a single nanoparticle formulation, 

allowing for theranostic applications such as 

monitoring biodistribution and target site 

accumulation, visualising and quantifying drug 

release, and assessing therapeutic efficacy 

longitudinally. By allowing patient selection and 

adjusting treatment efficacy, theranostic 

nanoparticles could be used to personalise 

nanomedicine-based therapeutics. [3-11] The 

attractiveness of nanomedicines originates from the 

ability to carefully engineer their physicochemical 

features, such as size, shape, elasticity, surface 

charge, and surface functionalization, in order to 

produce desired in vivo outcomes.[12,13] 

 

TYPES OF NANOPARTICLES 

1.NANOSUSPENION:-   

As a result, nanosuspension technology 

has proven to be a novel and profitable method for 

increasing the bioavailability of poorly soluble 

medicines. Nanosuspension is the dispersion in an 

aqueous medium of very fine colloidal solid 

medication particles that are biphasic in nature and 

stabilised by surfactants. These are easy to make 

and have more benefits than other methods. 

Because of their numerous advantages, such as low 

toxicity, improved bioavailability, targeted drug 

delivery to a specific site, reduced dosing 
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frequency, sustained and controlled release effects, 

high patient compliance, higher durability, ease of 

administration through various routes, and so on, 

nanosuspension has now become an integral part of 

nano-carriers [14]. Pharmaceutical nanosuspension 

particles must be less than 1 m in size, with an 

average size range of 200-600 nm [15]. This can be 

accomplished in a variety of ways, including 

bottom-up or top-down techniques. The top-down 

approach involves converting large particles into 

tiny particles [16-18] using techniques such as 

high-pressure homogenization and medium milling 

[19-21]. However, this method is highly costly, and 

there is a risk of heavy metal contamination [22, 

23]. The bottom-up technique entails dissolving the 

medication in the solvent system, followed by drug 

precipitation with the addition of an anti-solvent 

[24-25]. Media milling, nanoedge or high pressure 

homogenization, nanopure or precipitation method, 

and various other combinational technologies may 

be utilised to manufacture nanosuspension, either 

alone or in combination, to overcome the 

challenges caused by hydrophobic medications. 

 

Nanosuspension's Benefits and Need 

Nanosuspension offers various unique 

characteristics that can be employed as a potential 

drug delivery method, as described below [26-27]. 

 Reduced particle size, increased dissolving 

rate, and absorption rate and extent. 

 Physical stability over time. 

 In order to improve bioavailability, drugs with 

a high log P value can be produced as 

nanosuspensions. 

 Nanosuspension can be made with chemicals 

that are insoluble in water but soluble in oil. 

 Oral, topical, parentral, ophthalmic, 

pulmonary, and other routes can be used to 

administer the medicinal nanosuspension. 

Nanosuspensions can be used in tablet, pellet, 

hydrogel, and suppositories, for example. 

 Drug nanosuspension can help with passive 

drug targeting. 

 It has the potential to improve in vivo 

performance because to the drug's high 

dissolving rate and saturation solubility, as 

well as ease of manufacture and scale-up for 

large-scale production. 

 The ability to modify the surface of the 

particles for site-specific drug administration.  

 The amorphous fraction in particles can be 

increased via nanosuspension technology, 

which could lead to a change in crystalline 

structure and solubility. 

 

2.POLYMERIC MICELLES:- 

Over the last few decades, polymers, one 

of its most versatile families of materials, have 

transformed our daily lives. Their increased 

promise in the realm of polymer and 

pharmaceutical sciences stems from their capacity 

to establish either spatial or temporal control of 

medication administration. To date, a variety of 

polymer-based nanocarriers have been used to treat 

posterior ocular disorders, including nanoparticles 

(NPs), liposomes, solid-lipid nanoparticles (SLNs), 

and dendrimers [28-29]. However, to overcome 

ocular barriers, the majority of these formulations 

are supplied by intracameral, intravitreal, and 

periocular injections, with frequent injections being 

necessary, which may cause side effects [30]. 

Following topical application, polymericmicelles 

have recently shown increasing evidence as a 

viable nanocarrier to circumvent such constraints 

and offer therapeutic drug concentrations in the 

ocular tissues of the anterior and posterior 

segments [31-32]. 

Micelle formation principles 

The polymeric components self-assemble 

form micelles, which have a hydrophobic core and 

a hydrophilic corona and are nanoscale aggregates 

(10– 200 nm). A thermodynamic process favours 

such self-assembly. The hydrophilic chains cover 

the hydrophobic core to prevent direct contact with 

water, lowering the polymer-water system's 

interfacial free energy. The lowering of interfacial 

free energy is required for micellar formation 

[33,34]. The degree of self-aggregation is 

influenced by the concentration of polymer chains, 

the characteristics of the medication or any 

targeting agents, and the size and content of the 

copolymer backbone [35]. Micelles can take a 

variety of morphologies, including spherical, 

cylindrical, and star-shaped formations, depending 

on the molecular weight of the block copolymers 

[36-37]. 

 

 Polymeric micelle structures 

Polymeric micelles are classified into three 

categories:  

i. polymer–drug conjugates 

ii. drug-encapsulated carriers, 

iii. polyion complex micelles. 

 

3.DENDRIMERS:-  

Dendrimers are nanoscale three-

dimensional structures with tree-like branches that 

are well-defined and homogeneous.[38-39]  
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Dendrimers have attracted a lot of interest in the 

field of medication delivery, particularly in the 

creation of personalised medicine systems [40]. In 

1978, Vogtle et al. were the first to attempt to 

design and synthesise dendritic formations ([41]. 

Originally, these compounds were known as 

"cascade molecules." Tomalia's group produced a 

new category of cascade molecules including 

amides with considerably smaller structures after 

several years of this publication ([42,]. The term 

"dendrimers" was coined by Tomalia et al. to 

describe this novel class of dendritic 

macromolecules. The word "dendrimer" comes 

from the Greek words "dendros," which means 

"tree or branch," and "meros," which means "part" 

([43,44]. At the same time, Newkome's group 

reported the synthesis of comparable 

macromolecules, which they dubbed "arborols" 

after the Latin word "arbour," which means "tree." 

Dendrimers exhibit molecular chemistry (due to 

their step-by-step controlled synthesis) and 

polymer chemistry (owing to their monomer 

composition) ([45,46]. 

 

 Types of dendrimers 

a.Dendrimers made of polypropylene imine 

(PPI): 

The propylamine spacer moieties were 

first described by Vogtle [47,41] and the 

polypropylene imine (PPI) is the oldest known 

dendrimer. Poly-alkylamines with primary amine 

terminal groups and numerous tertiary tris-

propyleneamines are used to make them.  PPI 

dendrimers have been researched in the fields of 

materials science and biology. As an alternative to 

PPI dendrimers, the terms "polypropylene amine" 

(POPAM) and "diamino butane" (DAB) are 

sometimes used. PEI dendrimers are a type of PPI 

dendrimer in which the central functional groups 

are diaminoethane or diamino propane. 

b.Dendrimers made of polyamidoamine 

(PAMAM). 

PAMAM is a dendrimer with polyamide 

branches as branching points and tertiary amines as 

branching points. PAMAM dendrimers were first 

developed by Tomalia and colleagues in the mid-

1980s ([42,48], and they have since been 

extensively researched by researchers. The heart of 

―Starburst‖ dendrimers, a trademark of the 

PAMAM sub-class, is a tris-aminoethylene-imine 

group. The name comes from the fact that these 

high-generation dendrimer structures have a star-

like appearance when viewed in two dimensions 

(2D). 

c. Dendrimers of the Frechet type 

Hawker and Frechet [49,50] recently 

discovered a form of dendrimer with a hyper-

branched poly-benzyl ether architecture. Frechet 

dendrimers have –COOH groups as terminal 

groups, providing a convenient branching point for 

terminal group functionalization modification. 

Furthermore, the presence of these polar terminal 

groups aids in the solubility of this family of 

dendrimers in both aqueous and polar solvents 

([51]. 

d. Dendrimer with a core and a shell 

These are dendritic structures in which a 

dendrimer molecule serves as the core and is 

surrounding by dendrimer shells that are covalently 

attached. The core usually has a higher generation 

number than the dendrimers around it. Synthetic 

processes govern the attachment of additional 

shells, allowing the development of a nanoscale 

region of 1–100 nm [52]. 

e. Chiral dendrimers  

These dendrimers are made from branches 

that are constitutionally different but chemically 

similar to the chiral core.Chirality runs parallel to 

the functional group axis. Seebach and 

coauthors[53] constructed chiral dendrimers to 

investigate the effect of chiral building blocks on 

dendritic chirality and to demonstrate the potential 

of enantioselective host complexation using these 

structures. Dendrimers with merely a chiral core 

lose their chirality, and hence their optical activity, 

as their size grows. [52,53,54] are among the many 

scientists focusing on the development of chiral 

dendrimers. 

f. Dendrimers made of liquid crystalline 

dendrimers 

Many academics have looked at the 

synthesis of liquid crystals because it has potential 

industrial uses. Mesogenic liquid crystalline 

monomers make up these dendrimers. These liquid 

crystalline phases, or mesophages, are generated by 

rodlike (calamitic) or disklike (discotic) molecules, 

such as carbosilane dendrimers with mesogenic 

functional groups such as cyanobiphenyl and 

cholesteryl [55-56]. Percec and co-authors report 

the synthesis of the racemic AB2 rod-like 

mesogenic monomer 13-hydroxy-1-(4-

hydroxyphenyl)-2-(4-hydroxy-4′′-p-te-henylyl) 

tridecan(e5), as well as the creation of its first four 

generations of monodendrons and dendrimers, 

utilising a convergent strategy[57]. Amino 

terminated carbosilane dendrimers, according to 

Pedziwiatr-Werbicka and colleagues, have the 

ability to deliver short chain siRNA and anti-HIV 
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oligodeoxynucleotide to HIV-infected blood cells. 

These dendrimers had limited utility in the delivery 

of long-chain double-stranded nucleotides, but 

dendrimplexes of carbosilane dendrimers and anti-

HIV nucleic acid were more stable and less 

cytotoxic to blood cells than plain dendrimers, 

indicating their utility in the delivery of bioactives 

[58-59]. 

g. Dendrimers of peptides 

These are branched macromolecular 

structures with a peptidyl branching core and 

covalently attached terminal functional groups that 

are radial or wedge-like. Divergent and convergent 

methods of synthesis are often used to make 

peptide dendrimers. Because of their precise 

composition and simplicity of production, they 

have been investigated for a variety of 

biotechnological and biochemical applications. 

Peptide dendrimers are used as surfactants and as 

multiple antigen peptides protein mimics and 

carriers for medication and gene delivery in the 

biomedical area.[60-61] 

h. Dendrimers with several antigen peptides 

 Described the construction of multiple 

antigen peptide (MAP) dendrimers with a 

polylysine skeleton. The monomer unit of alkyl 

amino side-chain of lysine is used to introduce 

branching points in the dendrimer structure. The 

MAP dendrimer has been extensively researched in 

biological research, including vaccination and 

diagnostic studies.[62-63] 

i. Glycodendrimers 

Glycodendrimers are monodispersed 

macromolecular dendritic structures containing 

carbohydrate moiety. [64,65] The terminal groups 

of most glycodendrimers are saccharide residues, 

and the middle group is a sugar unit. 

Glycodendrimers are classified as carbohydrate 

cantered, carbohydrate-based, or carbohydrate-

coated.[66,67] These dendrimers bind to lectin-

attached systems better than mono-carbohydrate-

attached systems. They're utilised to deliver drugs 

to lectin-rich organs at specified sites.[68,69] 

j. Hybrid dendrimers  

Hybrid dendrimers are a mixture of linear 

and dendritic polymers that can be found as a 

hybrid block or graft copolymer. Due to the 

spherical shape and huge number of terminal 

functional groups of dendrimers, dendritic hybrids 

are likely to arise. Surface active agents, adhesives 

or compatibilizers, or hybrid dendritic linear 

polymers can all benefit from the small dendritic 

fragments' association with the various reactive 

chain ends. Dendritic hybrids have a compact, 

rigid, consistently formed globular structure that 

has been studied in the field of drug delivery for a 

variety of purposes.[70-72] 

k. Dendrimers made of polyester 

Drug therapeutic index development is a 

crucial area in diseases including cancer, 

inflammatory diseases, and infectious diseases like 

HIV. Polyester dendrimers have a lot of promise in 

this field because of their biocompatibility and 

biodegradability. They have lower toxicity than 

other dendrimers due to reduced drug exposure to 

healthy tissue, which is a desirable attribute in any 

molecule used as a drug delivery system. These 

dendrimers have interior void spaces that are 

similar to those found in common dendrimers, 

allowing them to be used as a carrier for small 

molecule drugs, metals, or imaging moieties.[73-

77] 

 

4.LIPOSOMES:-   

Liposomes are excellent biomembranes 

and cell models.[78-79] They are known as the 

excellent model in studies studying the origin, 

function, and development of primitive cell 

membranes because of their similarities to 

biological membranes.[80-81] Furthermore, they 

are used as carrier systems by the cosmetic, 

culinary, pharmaceutical, and agricultural 

industries to protect and distribute various 

materials such as nutraceuticals, medications, and 

genetic material. The phospholipid molecules used 

in the structure of lipid vesicles are the most 

important component of these naturally occurring 

bilayers. The major shared trait of bilayer-forming 

compounds is their amphiphilicity. It's also worth 

noting that not all phospholipid-based 

nanostructures are liposomes. Nonliposomal 

shapes, such as hexagonal, lamellar, micellar, or 

cubic phases, can also be generated by certain 

combinations of lipid or phospholipid 

molecules[82]. Liposomes, on the other hand, are 

continuously sealed vesicular structures made 

mostly of phospholipid bilayer(s) in an aqueous 

medium.[83]. Since the introduction of liposomes 

to the scientific community 35 years ago, there 

have been significant advancements in liposomal 

formulation optimization and engineering 

techniques .[84] As a result of these advancements, 

smart plans for tissue and cell targeting are being 

developed, as well as a longer liposomal halflife in 

blood flow and the elimination of harmful solvents 

used during their manufacturing.[85] 

Nanoliposomes and liposomes have chemical, 

structural, and thermodynamic features that are 
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almost identical. In comparison to liposomes, 

nanoliposomes have a larger surface area and can 

improve solubility, control release, boost 

bioavailability, and give precision targeting of the 

encapsulated substance.[86] Liposomes could be 

created by using natural ingredients such as soy, 

milk, or egg .[87] As a result, they can obtain 

regulatory approval to be used in food-grade 

products. According to recent research, lipid 

vesicles can be found in our first natural food, 

breast milk.[88-89] Humans benefit from 

phospholipid components of liposomes and 

liposomes, including liver protection  and memory 

enhancement.[90-92] 

The ability of lipid vesicles to target availability is 

a very useful feature. It is critical to target bioactive 

molecules to the location where their action is 

required in order to achieve sufficient 

concentrations of bioactives at the target site for 

optimal effectiveness. Liposomes can be used to 

encapsulate, distribute, and release lipid-soluble 

and amphiphilic substances, medicines, and 

biological molecules such as peptides and genes 

due to the presence of both hydrous and lipid 

phases in their structure. Liposomes have a lot of 

potential applications in the food business, current 

medication delivery systems, and gene therapy 

systems because of their unique features.[93] 

 

5.QUANTUM DOTS:- 

Quantum dots are a type of nanomaterial 

used for fluorescent labelling and imaging in 

nanomedicine.[94-97] Quantum dots with different 

emission bands can be made by altering the particle 

size. Quantum dots emission bands are narrow and 

constantly tunable, allowing for multiplexed read-

out, and wide absorption bands simplify the 

excitation source's use circumstances. Quantum 

dots have a long fluorescence lifetime and 

outstanding fluorescence stability, which is worth 

mentioning. These benefits make it easier to 

observe biomolecules that have been labelled in 

vivo and provide a valuable tool for nanomedicine. 

The quality of the synthesis process is determined 

by the parameters control, which determines the 

possible application of Quantum dots materials in 

nanomedicine. As a result, for steerable 

manufacture and practical applications, accurate 

Quantum dots synthetic techniques are 

required.[98-99] 

 Types of quantum dots 

 Quantum dots are a sort of low-

dimensional substance whose dimensions in all 

three dimensions are no more than twice the 

exciton Bohr radius of the material to which they 

correspond. Quantum dots have a diameter of 2 to 

20 nm and are spherical or quasi-spherical in shape. 

Semiconductor Quantum dots , carbon Quantum 

dots, two-dimensional (2D) Quantum dots , and 

perovskite Quantum dots are the four categories. 

Wide absorption band and narrow emission band, 

continuous tunable emission spectrum creation, 

long fluorescence life, significant Stokes shift, and 

outstanding biocompatibility are just a few of the 

optical features of Quantum dots . As a result, 

Quantum dots are quickly becoming one of the 

most important materials in nanomedicine.[100-

105] 

a.) Quantum dots in semiconductors 

QDs manufactured of semiconductor materials 

have come a long way in the last two decades, 

with their emission band spanning the 

ultraviolet to near 

infrared.[94,95]Semiconductor Quantum dots 

are divided into groups:  

 II–VI (CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, 

and ZnTe) 

 III–V (InN, InP, InAs, InSb, GaN, GaP, GaAs, 

and GaSb) 

  IV–VI (PbS, PbSe, and PbTe), IV–VI (PbS, 

PbS.[106-97] 

 

b.) Quantum dots made of carbon 

Carbon Quantum dots (C-QDs) are a type 

of nanomaterial made up of monodisperse 

quasispherical nanocarbon dots with a diameter of 

less than 10 nanometers.[107] The emission band 

of C-QDs is usually size dependent and excitation 

wavelength dependent, as it is a new type of 

Quantum dot. Researchers are quite interested in 

these qualities.[108-109] Because of their heavy 

metal composition, conventional semiconductor 

Quantum dots are hazardous, limiting their use in 

nanomedicine. C-QDs have the advantages of low 

toxicity, low cost, and good biocompatibility in 

addition to similar fluorescence properties. As a 

result, they can be used in nanomedical 

applications instead of semiconductor Quantum 

dots.[110] Researchers have created two types of 

C-QD synthesising methods in the last decade: 

"top-down" and "bottom-up." 

c.) Quantum dots in two dimensions 

In recent years, graphene, a two-

dimensional substance, has become a research 

hotspot in a variety of sectors. Researchers 

discovered that when the size of a graphene sheet is 

less than 20 nm, it begins to glow. Nano-scale 

graphene (graphene Quantum dots ) retains the 
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inherent advantages of graphene while also 

exhibiting certain new properties, such as a greater 

specific surface area, improved solubility, and ease 

of assembly and modification, thanks to the 

quantum constraint effect. Graphene Quantum dots 

offer fresh perspectives on graphene research and 

show the way for future research into additional 

2D- Quantum dots. 2D- Quantum dots are rapidly 

being used in nanomedicine due to their superior 

physical and chemical properties. The utilisation of 

microfluidic technology for batch stable synthesis 

is critical.[111] 

d.) Quantum dots made of perovskite 

CaTiO3 was first identified in the Ural 

Mountains by mineralogist Gustav Rose, who 

dubbed it perovskite.[112] In the last five years, 

perovskite quantum dots have been a rising star in 

scientific study.[113-118] It has been pursued by 

researchers universally due to its remarkable 

photoelectric capabilities and predictable 

application potential. Perovskite is a type of 

ceramic oxide with the formula ABX3 as its 

general formula. [119-121]A-site ions are metal 

elements with a high ion radius that coordinate 

with 12 oxygen elements to produce the densest 

cubic accumulation, primarily maintaining the 

perovskite structure. B-site ions are transition metal 

elements (Mn, Co, Fe, etc.) with a small ionic 

radius that coordinate with six oxygen and occupy 

the octahedron centre in the cubic dense 

accumulation. It is frequently the major component 

determining many aspects of perovskite structure 

materials due to the flexibility of its valence state. 

Both A-site and B-site ions can be partially 

replaced by other metal ions of similar radius, 

allowing the perovskite to maintain its crystal 

structure.[122-125] Hybrid organic–inorganic 

perovskites (HOIPs) Quantum dots [125,126] and 

all-inorganic perovskites (AIPs) Quantum dots are 

two types of perovskite Quantum dots.[127-129] 

 

6.)SOLID LIPID NANOPARTICLES 

When [130] proposed the terms solid lipid 

nanoparticles  and nanostructured lipid carriers in 

the 1990s, it seemed like a natural fit: combine the 

benefits of NPs (mostly metallic and polymeric at 

the moment) with those of lipid-based parenteral 

emulsions, which are made up of non-toxic and 

biodegradable lipid components.[131] These lipid 

NPs were marketed as a safer alternative to other 

nanosystems since they are made up of a solid 

matrix that allows for regulated drug release while 

being more stable (and surely less expensive) than 

previous phospholipid-based liposomes.[132] 

Solid lipid nanoparticles were first 

described as tiny, spherical particles made of solid 

lipids at room temperature, which may be viewed 

of as ideal crystal lipid matrices capable of 

accommodating a medicine or other molecules 

between fatty acid chains.[133] However, it is now 

recognised that this is not always the case, as disc-

like shapes and flat ellipsoidal geometry also were 

described Furthermore, instead of being immersed 

in the solid core, the loaded medicine may be 

largely adhered to the carrier matrix surface [134-

136] 

 application of Solid lipid nanocarriers 

in drug delivery 

Solid lipid nanocarriers have showed 

considerable promise in drug delivery, particularly 

in terms of drug release control and targeting to 

specific tissues. [137-141] With the right excipients 

and particle manufacturing processes, solid lipid 

particles can carry both small molecule drug 

substances and biomacromolecules; solid carriers 

limit drug mobility, and the lipid digestion product 

increases drug solubility in vivo. [142-143] 

a.) Oral presentation 

Poorly water-soluble compounds are a 

challenge for oral drug administration since their 

low aqueous solubility is the rate-limiting stage for 

several compounds' absorption. Oral bioavailability 

has been found to be improved by lipid-based drug 

delivery methods. [144,145]Even though different 

lipid excipients were utilised, oral administration of 

drug-loaded nanostructured lipid carriers improved 

bioavailability for poorly water-soluble medicines. 

Atorvastatin is used to treat dyslipidemia and 

coronary heart disease Olmesartan medoxomil is 

being used to treat hypertension and luteolin has 

been used to treat respiratory disorders When 

compared to drug suspension, the bioavailability of 

those drug compounds from drug-loaded 

nanostructured lipid carriers increased by 

approximately 5-fold in rats Tmax values reported 

from drug-loaded nanostructured lipid carriers and 

drug suspension were not significantly different 

[146-149] In beagle dogs, drug-loaded 

nanostructured lipid carriers increased the oral 

bioavailability of sirolimus and silymarin by 2 to 3 

times compared to control pill or pellets The Tmax 

for both sirolimus and silybin in the in vivo 

investigation of drug-loaded nanostructured lipid 

carriers  in beagle dogs was smaller than that of the 

control group, i.e. the marketed goods, which was 

an interesting finding. The size of solid lipid 

nanocarriers  has an impact on the absorption and 
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oral bioavailability of compounds that are low 

water soluble. [150-151] 

b.) Parenteral 

The colloidal dimensions of solid lipid 

nanoparticles  and the regulated release behaviour 

of this nanoparticulate carrier enable drug 

protection and administration by both parenteral 

and non-parenteral routes, highlighting the 

versatility of this nanoparticulate carrier. The use of 

solid lipid nanocarriers via parenteral methods has 

been documented in publications, including 

biodistribution and pharmacokinetic investigations 

on i.v. and i.p. dosing. [152-158] The lipid matrices 

utilised in solid lipid Nanoparticles  produce a 

sustained release profile that can last for several 

weeks.[154-156,158] This release profile is most 

likely influenced by the lipid matrix's composition 

as well as the integrated molecule's affinity for 

certain formulation component  Because 

hydrophilic peptides and proteins tend to collect at 

the o/w interface during particle formation, a burst 

release of the drug may be observed after in vivo 

injection of peptides and proteins delivered by solid 

lipid nanocarriers. [159-162] During particle 

preparation, hydrophilic peptides and proteins tend 

to concentrate at the o/w interface.[163]Although 

burst release can be effective for delivering an 

initial dose, [164] it is frequently seen as a 

substandard controlled release formulation, and 

there is a desire to prevent it through formulation 

optimization in general. The burst release of 

integrated compound is often followed by a well-

defined slow release period,[159,160] during which 

the compound from the particle's core is released. 

c.) Dermal drug delivery 

Because of their biocompatibility and 

lipophilicity, lipids have been widely employed as 

functional excipients in cosmetic formulations and 

for cutaneous medication delivery. The advantages 

of solid lipid nanocarriers include the ability to 

stabilise both drug molecules and labile 

components in formulations and at the application 

site, as well as regulating drug release. Using 

certain excipients and particle preparation 

procedures in solid lipid nanocarriers formulations 

may improve both occlusive behaviour at the skin 

surface and drug molecule penetration across the 

skin barrier, having adequate drug retention locally 

to ensure therapeutic effects [164,165-167]. 

Ocular drug delivery 

The advancement of nanotechnology 

presents a significant opportunity for the effective 

delivery of ocular drugs and the treatment of 

anterior segment illnesses[168-169]. The 

development of specific nanotherapeutics for 

different drugs and diseases using a lipid-based 

nanocarrier strategy offers another option, with the 

added benefit of  solid lipid nanocarriers in 

regulating drug release and increasing the residence 

time of both drug molecules and formulations in 

the precorneal area, improving efficacy. The 

hydrophobic ion pairing method has been utilised 

to improve drug loading and control drug release in 

nanoparticles[170]. As ion-pair complexes, 

pilocarpine and tobramycin were successfully 

integrated into solid lipid nanocarriers .  [171-173] 

 

II. CONCLUSION 
Formulators are having a lot of problems 

developing pharmaceutical formulations that 

contain poorly soluble medicines. Nanosuspension 

is now a potential technique for delivering a variety 

of therapeutically active chemicals due to a number 

of significant advantages. This method has the 

potential to overcome difficulties associated with 

hydrophobic pharmaceuticals, such as poor 

solubility and bioavailability. Oral administration 

necessitates the encapsulation of therapeutic agents 

in nanosized carriers with a particularly stable 

structure, as leaking of the payload before it 

reaches the intended sites might decrease 

medication bioavailability and efficiency 

dramatically. The major hurdles for designers of 

surface-modified liposomes for oral drug 

administration are still enhancing oral 

bioavailability and stability, as well as minimising 

adverse effects; hence, the size and surface charge 

are the most significant concerns. It's critical to 

keep developing nanocarrier systems for oral 

delivery that meet the demands for stability, 

solubility, and permeability. These nanocarrier 

systems should be efficient, easy to use, safe, and 

inexpensive. Solid lipid nanoparticles are a stronger 

carrier for managing drug release than 

nanostructured lipid carriers; the composition of 

lipid particles can be chosen based on the needed 

drug release profile, delivery route, and application 

site. The addition of functional excipients to lipid 

carriers, and also particle surface modification, may 

expand the range of solid lipid nanocarriers and 

target pharmaceuticals that can be delivered to 

specific organs and tissues. A deeper knowledge of 

the mechanisms driving nanoparticle molecular 

interactions and biological obstacles would aid 

future drug carrier design and translation to clinical 

uses. Ultimately, ARTIFICIAL CELLS, 

NANOMEDICINE, AND BIOTECHNOLOGY 9 

liposomes have cemented their place in current 
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medication delivery, gene therapy systems, and the 

food sector. Quantum dots are semiconductor 

nanocrystals with variables significantly spectra, 

limited emission spectra, adjustable emission 

peaks, extended fluorescence lifetimes, low 

photobleaching, and the capacity to be conjugated 

to proteins, making them ideal bioimaging probes. 
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